Influence of deformability of human red cells upon blood viscosity.

نویسندگان

  • H Schmid-Schönbein
  • R Wells
  • J Goldstone
چکیده

The viscosity of blood at high rates of shear is unusually low compared to other suspensions of similar concentration. The underlying mechanisms were studied by rotational viscometry, red cell filtration, viscometry of packed cells and direct microscopic observation of red cells under flow in a transparent cone plate viscometer. Deformability of red cells was altered osmotically or abolished by aldehyde fixation. The normal red cells under isosmotic conditions passed easily through filter pores (5 to 14 JJL diameter). After osmotic crenation, deformability of cells in pore flow was reduced. Normal cells were deformed into a variety of shapes at high rates of shear, while crenated cells tumbled undeformed. Suspensions of these normal cells showed more pronounced shear thinning (reduction of viscosity with increasing shear rate) than suspensions of crenated cells. Suspensions of rigid cells showed greatly increased viscosity and a shear thickening as a function of shear rate and shear time. The physiological deformability is of critical importance to blood flow at high rates of shear. This is possible through a fluid transition of the erythrocyte caused by a rotation of the membrane with and around the cell contents. This phenomenon is the prime cause of the progressive reduction in viscosity with increasing shear. ADDITIONAL

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement Techniques for Red Blood Cell Deformability: Recent Advances

Human red blood cells (RBCs) or erythrocytes have remarkable deformability. Upon external forces, RBCs undergo large mechanical deformation without rupture, and they restore to original shapes when released. The deformability of RBCs plays crucially important roles in the main function of RBCs oxygen transport through blood circulation. RBCs must withstand large deformations during repeated pas...

متن کامل

Red blood cell deformability influences platelets--vessel wall interaction in flowing blood.

Hematocrit and red cell size are important factors for the transport of blood platelets toward subendothelium in flowing blood. We report that red cell deformability also influences platelet transport. Red cell deformability was estimated with Couette-flow viscosimetry at a shear rate of 130 s-1 and expressed as a 'T' factor--a dimensionless parameter relating the relative viscosity and the hem...

متن کامل

Deformability and intrinsic material properties of neonatal red blood cells.

Whole cell and membrane deformability are essential for red blood cell (RBC) survival and for effective blood flow. Neonatal RBCs display several specific properties (eg, large size, high hemoglobin F) that could influence their deformation characteristics and contribute to their shortened life span. The present study was designed to compare selected rheologic properties (cellular deformability...

متن کامل

Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows.

Concentrated erythrocyte (i.e., red blood cell) suspensions flowing in microchannels have been simulated with an immersed-boundary lattice Boltzmann algorithm, to examine the cell layer development process and the effects of cell deformability and aggregation on hemodynamic and hemorheological behaviors. The cells are modeled as two-dimensional deformable biconcave capsules and experimentally m...

متن کامل

An assessment of red cell deformability using a simple filtration method.

We assessed the simple method of measuring red cell deformability described by Reid et al. The technique was found to be reproducible. The validity of the method as a measure of red cell deformation was confirmed by (a) marked reduction of the deformability index after fixation of red cells with glutaraldehyde, and (b) an inverse correlation of deformability index with high-shear blood viscosit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 25 2  شماره 

صفحات  -

تاریخ انتشار 1969